Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
J Pathol Clin Res ; 8(4): 340-354, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35289116

RESUMO

The tumor microenvironment (TME) is a critical regulator of the development of malignant lymphoma. Therapeutics targeting the TME, especially immune checkpoint molecules, are changing the treatment strategy for lymphoma. However, the overall response to these therapeutics for diffuse large B-cell lymphoma (DLBCL) is modest and new targets of immunotherapy are needed. To find critical immune checkpoint molecules for DLBCL, we explored the prognostic impact of immune checkpoint molecules and their ligands using publicly available datasets of gene expression profiles. In silico analysis of three independent datasets (GSE117556, GSE10846, and GSE181063) revealed that DLBCL expressing CD24 had a poor prognosis and had a high frequency of MYC aberrations. Moreover, gene set enrichment analysis showed that the 'MYC-targets-hallmark' (false discovery rate [FDR] = 0.024) and 'inflammatory-response-hallmark' (FDR = 0.001) were enriched in CD24-high and CD24-low DLBCL, respectively. In addition, the expression of cell-specific markers of various immune cells was higher in CD24-low DLBCL than in CD24-high DLBCL. CIBERSORT analysis of the datasets showed fewer macrophages in CD24-high DLBCL than in CD24-low DLBCL. Additionally, immunohistochemical analysis of 335 cases of DLBCL showed that few TME cells were found in CD24-high DLBCL, although statistical differences were not observed. These data indicate that CD24 expression suppresses immune cell components of the TME in DLBCL, suggesting that CD24 may be a target for cancer immunotherapy in aggressive large B-cell lymphoma.


Assuntos
Antígeno CD24 , Proteínas de Checkpoint Imunológico , Linfoma Difuso de Grandes Células B , Antígeno CD24/genética , Antígeno CD24/imunologia , Humanos , Proteínas de Checkpoint Imunológico/imunologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/imunologia , Linfoma Difuso de Grandes Células B/patologia , Fenótipo , Prognóstico , Microambiente Tumoral
2.
Cell Mol Life Sci ; 79(2): 83, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35048182

RESUMO

Breast cancer is the leading cause of cancer death in female. Until now, advanced breast cancer is still lack effective treatment strategies and reliable prognostic markers. In the present article, we introduced the physiologic and pathologic functions and regulation mechanisms of ZBTB28, a tumor suppressor gene, in breast cancer. ZBTB28 is frequently silenced in breast cancer due to promoter CpG methylation, and its expression is positively correlated with breast cancer patient survival. The antineoplastic effect of ZBTB28 in breast cancer was elucidated through a series of in vitro and in vivo measurements, including cell proliferation, apoptosis, cell cycle, epithelial mesenchymal transition (EMT), and growth of xenografts. Furthermore, ZBTB28 can directly regulate IFNAR to activate interferon-stimulated genes and potentiate macrophage activation. Ectopic ZBTB28 expression in breast cancer cells was sufficient to downregulate CD24 and CD47 to promote phagocytosis of macrophages, demonstrating that ZBTB28 was beneficial for the combination treatment of anti-CD24 and anti-CD47. Collectively, our results reveal a mode of action of ZBTB28 as a tumor suppressor gene and suggest that ZBTB28 is an important regulator of macrophage phagocytosis in breast cancer, holding promise for the development of novel therapy strategies for breast cancer patients.


Assuntos
Neoplasias da Mama/genética , Antígeno CD24/genética , Antígeno CD47/genética , Fagocitose , Receptor de Interferon alfa e beta/genética , Proteínas Repressoras/genética , Animais , Neoplasias da Mama/imunologia , Antígeno CD24/imunologia , Antígeno CD47/imunologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptor de Interferon alfa e beta/imunologia , Proteínas Repressoras/imunologia , Células THP-1
3.
Mol Immunol ; 141: 87-93, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34837778

RESUMO

Chronic obstructive pulmonary disease (COPD) is characterized by a progressive, persistent immune response to cigarette smoke, and it has been suggested that immune dysregulation is involved in its pathogenesis. A subset of regulatory B cells (Bregs) with high levels of the surface markers CD24 and CD38 (CD24hiCD38hi) has previously been shown to exert an immunosuppressive function. This study investigated the levels and activity of CD24hiCD38hi Bregs in stable COPD (sCOPD). Testing the peripheral blood from 65 patients with sCOPD and 39 control subjects for CD24hiCD38hi Breg subsets by flow cytometry showed that the patients with sCOPD had significantly lower levels of CD24hiCD38hi Bregs and IL-10+ B cells. The patients with sCOPD had lower serum interleukin-10 levels than the controls. The patients with most severe sCOPD had the lowest levels of CD24hiCD38hi Bregs. Spearman correlation analysis showed that the levels of CD24hiCD38hi Bregs in the patients with sCOPD positively correlated with serum interleukin-10 concentrations but not with levels of C-reactive protein. Compared to healthy controls, functional studies showed that Breg cells from patients with sCOPD exhibit a decreased suppressive function. We conclude that sCOPD is characterized by the exhaustion of CD24hiCD38hi regulatory B cells compartment. Therefore, CD24hiCD38hi Bregs may contribute to the pathogenesis of sCOPD.


Assuntos
Linfócitos B Reguladores/imunologia , Leucócitos Mononucleares/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , ADP-Ribosil Ciclase 1/sangue , ADP-Ribosil Ciclase 1/imunologia , Idoso , Biomarcadores/sangue , Antígeno CD24/sangue , Antígeno CD24/imunologia , Feminino , Humanos , Interleucina-10/sangue , Interleucina-10/imunologia , Contagem de Linfócitos/métodos , Masculino , Doença Pulmonar Obstrutiva Crônica/sangue
4.
Cells ; 10(12)2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34943938

RESUMO

TMEM176B is a member of the membrane spanning 4-domains (MS4) family of transmembrane proteins, and a putative ion channel that is expressed in immune cells and certain cancers. We aimed to understand the role of TMEM176B in cancer cell signaling, gene expression, cell proliferation, and migration in vitro, as well as tumor growth in vivo. We generated breast cancer cell lines with overexpressed and silenced TMEM176B, and a therapeutic antibody targeting TMEM176B. Proliferation and migration assays were performed in vitro, and tumor growth was evaluated in vivo. We performed gene expression and Western blot analyses to identify the most differentially regulated genes and signaling pathways in cells with TMEM176B overexpression and silencing. Silencing TMEM176B or inhibiting it with a therapeutic antibody impaired cell proliferation, while overexpression increased proliferation in vitro. Syngeneic and xenograft tumor studies revealed the attenuated growth of tumors with TMEM176B gene silencing compared with controls. We found that the AKT/mTOR signaling pathway was activated or repressed in cells overexpressing or silenced for TMEM176B, respectively. Overall, our results suggest that TMEM176B expression in breast cancer cells regulates key signaling pathways and genes that contribute to cancer cell growth and progression, and is a potential target for therapeutic antibodies.


Assuntos
Proteínas de Membrana/genética , Proteína Oncogênica v-akt/genética , Serina-Treonina Quinases TOR/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Antígeno CD24/genética , Antígeno CD24/imunologia , Carcinogênese/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Xenoenxertos , Humanos , Camundongos , RNA-Seq , Transdução de Sinais/efeitos dos fármacos , Tamoxifeno/farmacologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia
5.
Int J Mol Sci ; 22(17)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34502547

RESUMO

Cancer stem cells (CSCs) can be induced from differentiated cancer cells in the tumor microenvironment or in response to treatments and exhibit chemo- and radioresistance, leading to tumor recurrence and metastasis. We previously reported that triple negative breast cancer (TNBC) cells with acquired radioresistance exhibited more aggressive features due to an increased CSC population. Therefore, here, we isolated CSCs from radiotherapy-resistant (RT-R)-TNBC cells and investigated the effects of these CSCs on tumor progression and NK cell-mediated cytotoxicity. Compared to MDA-MB-231 and RT-R-MDA-MB-231 cells, CD24-/low/CD44+ cells isolated from RT-R-MDA-MB-231 cells showed increased proliferation, migration and invasion abilities, and induced expression of tumor progression-related molecules. Moreover, similar to MDA-MB-231 cells, CD24-/low/CD44+ cells recruited NK cells but suppressed NK cell cytotoxicity by regulating ligands for NK cell activation. In an in vivo model, CD24-/low/CD44+ cell-injected mice showed enhanced tumor progression and lung metastasis via upregulation of tumor progression-related molecules and altered host immune responses. Specifically, NK cells were recruited into the peritumoral area tumor but lost their cytotoxicity due to the altered expression of activating and inhibitory ligands on tumors. These results suggest that CSCs may cause tumor evasion of immune cells, resulting in tumor progression.


Assuntos
Neoplasias da Mama/imunologia , Citotoxicidade Imunológica/imunologia , Células Matadoras Naturais/imunologia , Células-Tronco Neoplásicas/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Antígeno CD24/imunologia , Antígeno CD24/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/imunologia , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/efeitos da radiação , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Humanos , Receptores de Hialuronatos/imunologia , Receptores de Hialuronatos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/efeitos da radiação , Radioterapia/métodos
6.
Int J Mol Sci ; 22(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34360811

RESUMO

INTRODUCTION: CD24 is a mucin-like glycoprotein expressed at the surface of hematopoietic and tumor cells and was recently shown to be expressed in the first trimester placenta. As it was postulated as an immune suppressor, CD24 may contribute to maternal immune tolerance to the growing fetus. Preeclampsia (PE), a major pregnancy complication, is linked to reduced immune tolerance. Here, we explored the expression of CD24 in PE placenta in preterm and term cases. METHODS: Placentas were derived from first and early second trimester social terminations (N = 43), and third trimester normal term delivery (N = 67), preterm PE (N = 18), and preterm delivery (PTD) (N = 6). CD24 expression was determined by quantitative polymerase chain reaction (qPCR) and Western blotting. A smaller cohort included 3-5 subjects each of term and early PE, and term and preterm delivery controls analyzed by immunohistochemistry. RESULTS: A higher expression (2.27-fold) of CD24 mRNA was determined in the normal term delivery compared to first and early second trimester cases. The mRNA of preterm PE cases was only higher by 1.31-fold compared to first and early second trimester, while in the age-matched PTD group had a fold increase of 5.72, four times higher compared to preterm PE. The delta cycle threshold (ΔCt) of CD24 mRNA expression in the preterm PE group was inversely correlated with gestational age (r = 0.737) and fetal size (r = 0.623), while correlation of any other group with these parameters was negligible. Western blot analysis revealed that the presence of CD24 protein in placental lysate of preterm PE was significantly reduced compared to term delivery controls (p = 0.026). In immunohistochemistry, there was a reduction of CD24 staining in villous trophoblast in preterm PE cases compared to gestational age-matched PTD cases (p = 0.042). Staining of PE cases at term was approximately twice higher compared to preterm PE cases (p = 0.025) but not different from normal term delivery controls. CONCLUSION: While higher CD24 mRNA expression levels were determined for normal term delivery compared to earlier pregnancy stages, this expression level was found to be lower in preterm PE cases, and could be said to be linked to reduced immune tolerance in preeclampsia.


Assuntos
Antígeno CD24/imunologia , Tolerância Imunológica , Placenta/imunologia , Pré-Eclâmpsia/imunologia , Adulto , Estudos de Coortes , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Pessoa de Meia-Idade , Gravidez , Trimestres da Gravidez , Adulto Jovem
7.
CNS Neurosci Ther ; 27(10): 1105-1117, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34363319

RESUMO

Glioma is a malignant tumor with the highest incidence among all brain tumors (about 46% of intracranial tumors) and is the most common primary intracranial tumor. Among them, glioblastoma (GBM) is highly malignant and is one of the three refractory tumors with the highest mortality rate in the world. The survival time from glioblastoma diagnosis to death is only 14-16 months for patients with standard treatment such as surgery plus radiotherapy and chemotherapy. Due to its high malignancy and poor prognosis, in-depth studies have been conducted to explore effective therapeutic strategies for glioblastoma. In addition to the conventional surgery, radiotherapy, and chemotherapy, the glioblastoma treatments also include targeted therapy, immunotherapy, and electric field treatment. However, current treatment methods provide limited benefits because of the heterogeneity of glioblastoma and the complexity of the immune microenvironment within a tumor. Therefore, seeking an effective treatment plan is imperative. In particular, developing an active immunotherapy for glioblastoma has become an essential objective in the field. This article reviews the feasibility of CD47/CD24 antibody treatment, either individually or in combination, to target the tumor stem cells and the antitumor immunity in glioblastoma. The potential mechanisms underlying the antitumor effects of CD47/CD24 antibodies are also discussed.


Assuntos
Neoplasias Encefálicas/terapia , Antígeno CD24/imunologia , Antígeno CD47/imunologia , Glioblastoma/terapia , Imunoterapia/métodos , Animais , Humanos
8.
Oncogene ; 40(22): 3815-3825, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33958722

RESUMO

The integration of viral DNA into the host genome is mediated by viral integrase, resulting in the accumulation of double-strand breaks. Integrase-derived peptides (INS and INR) increase the number of integration events, leading to escalated genomic instability that induces apoptosis. CD24 is a surface protein expressed mostly in cancer cells and is very rarely found in normal cells. Here, we propose a novel targeted cancer therapeutic platform based on the lentiviral integrase, stimulated by integrase-derived peptides, that are specifically delivered to cancerous cells via CD24 antigen-antibody targeting. INS and INR were synthesized and humanized and anti-CD24 antibodies were fused to the lentivirus envelope. The activity, permeability, stability, solubility, and toxicity of these components were analyzed. Cell death was measured by fluorescent microscopy and enzymatic assays and potency were tested in vitro and in vivo. Lentivirus particles, containing non-functional DNA led to massive cell death (40-70%). Raltegravir, an antiretroviral drug, inhibited the induction of apoptosis. In vivo, single and repeated administrations of INS/INR were well tolerated without any adverse effects. Tumor development in nude mice was significantly inhibited (by 50%) as compared to the vehicle arm. In summary, a novel and generic therapeutic platform for selective cancer cell eradication with excellent efficacy and safety are presented.


Assuntos
Antígeno CD24/biossíntese , Integrases/farmacologia , Lentivirus/enzimologia , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Fragmentos de Peptídeos/farmacologia , Animais , Anticorpos Monoclonais/imunologia , Apoptose/efeitos dos fármacos , Antígeno CD24/imunologia , Linhagem Celular Tumoral , Humanos , Integrases/química , Lentivirus/genética , Lentivirus/imunologia , Camundongos , Camundongos Nus , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/virologia , Fragmentos de Peptídeos/química , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Front Immunol ; 12: 661290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33995384

RESUMO

Intestinal immunity is coordinated by specialized mononuclear phagocyte populations, constituted by a diversity of cell subsets. Although the cell subsets constituting the mononuclear phagocyte network are thought to be similar in both small and large intestine, these organs have distinct anatomy, microbial composition, and immunological demands. Whether these distinctions demand organ-specific mononuclear phagocyte populations with dedicated organ-specific roles in immunity are unknown. Here we implement a new strategy to subset murine intestinal mononuclear phagocytes and identify two novel subsets which are colon-specific: a macrophage subset and a Th17-inducing dendritic cell (DC) subset. Colon-specific DCs and macrophages co-expressed CD24 and CD14, and surprisingly, both were dependent on the transcription factor IRF4. Novel IRF4-dependent CD14+CD24+ macrophages were markedly distinct from conventional macrophages and failed to express classical markers including CX3CR1, CD64 and CD88, and surprisingly expressed little IL-10, which was otherwise robustly expressed by all other intestinal macrophages. We further found that colon-specific CD14+CD24+ mononuclear phagocytes were essential for Th17 immunity in the colon, and provide definitive evidence that colon and small intestine have distinct antigen presenting cell requirements for Th17 immunity. Our findings reveal unappreciated organ-specific diversity of intestine-resident mononuclear phagocytes and organ-specific requirements for Th17 immunity.


Assuntos
Colo/imunologia , Células Dendríticas/imunologia , Macrófagos/imunologia , Fagócitos/imunologia , Células Th17/imunologia , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Antígeno CD24/imunologia , Antígeno CD24/metabolismo , Colo/citologia , Colo/metabolismo , Citocinas/genética , Citocinas/imunologia , Citocinas/metabolismo , Células Dendríticas/metabolismo , Expressão Gênica/imunologia , Fatores Reguladores de Interferon/imunologia , Fatores Reguladores de Interferon/metabolismo , Intestino Delgado/imunologia , Receptores de Lipopolissacarídeos/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/metabolismo , Camundongos da Linhagem 129 , Camundongos Knockout , Camundongos Transgênicos , Fagócitos/metabolismo , Receptor da Anafilatoxina C5a/imunologia , Receptor da Anafilatoxina C5a/metabolismo , Células Th17/metabolismo
10.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925530

RESUMO

Regulatory B (Breg) cells are endowed with immune suppressive functions. Various human and murine Breg subtypes have been reported. While interleukin (IL)-10 intracellular staining remains the most reliable way to identify Breg cells, this technique hinders further essential functional studies. Recent findings suggest that CD9 is an effective surface marker of murine IL-10 competent Breg cells. However, the stability of CD9 and its relevance as a unique marker for human Breg cells, which have been widely characterized as CD24hiCD38hi, have not been investigated. Here, we demonstrate that CD9 expression is sensitive to in vitro B cell stimulations. CD9 expression could either be re-expressed or downregulated in purified CD9-negative B cells and CD9-positive B cells, respectively. We found no significant differences in the Breg differentiation capacity of the CD9-negative and CD9-positive B cells. Furthermore, CD9-positive B cells co-express CD40 and CD86, suggesting their nature as B cell activation or co-stimulatory molecules, rather than regulatory ones. Therefore, we report the relatively unstable CD9 as a distinct surface molecule, indicating the need for further research for a more reliable marker to purify human Breg cells.


Assuntos
ADP-Ribosil Ciclase 1/imunologia , Linfócitos B Reguladores/imunologia , Antígeno CD24/imunologia , Glicoproteínas de Membrana/imunologia , Tetraspanina 29/imunologia , Tecido Adiposo/citologia , Biomarcadores/análise , Diferenciação Celular/imunologia , Criança , Humanos , Interleucina-10/imunologia , Ativação Linfocitária , Células-Tronco Mesenquimais/imunologia , Tonsila Palatina/citologia , Regulação para Cima
11.
Cell Immunol ; 362: 104284, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33550188

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease leading to considerable morbidity worldwide, which can be developed from a breakdown in immunological tolerance, resulting in T cell hyperactivation. T cell hyperactivation has been implicated in the tissue damage associated with many diseases. Although many researchers have identified the involvement of T-cell receptor-associated signaling molecules in T-cell activation, the mechanisms underlying this process are yet to be elaborated. In the current study, we set out to reveal a novel transcriptional mechanism required for CD4 + T cell immunoactivity involved in SLE. First of all, miR-124 was experimentally determined to be under-expressed in peripheral blood samples of SLE patients relative to healthy individuals. We further isolated CD4 + T cells from the peripheral blood samples of SLE patients and healthy individuals, and found that miR-124 was poorly expressed in peripheral blood-derived CD4 + T cells of SLE patients. Subsequent experiments demonstrated that re-expression of miR-124 inhibited the immunoactivity of CD4 + T cells from SLE patients, which was achieved through the down-regulation of IRF1 since dual-luciferase reporter gene assay findings indicated that miR-124 could target IRF1. In addition, HDAC1 was found to be enriched at the miR-124 promoter resulting in inhibition of miR-124 expression, thereby promoting the immunoactivity of CD4 + T cells. In conclusion, we identify that as a stimulator of CD4 + T cell immunoactivity, HDAC1 may be implicated in the immunopathology of SLE. The study will open up new avenues to explore future immunotherapy strategies for SLE.


Assuntos
Histona Desacetilase 1/metabolismo , Fator Regulador 1 de Interferon/metabolismo , Lúpus Eritematoso Sistêmico/genética , MicroRNAs/genética , Adulto , Antígeno CD24/imunologia , Linfócitos T CD4-Positivos/imunologia , China , Feminino , Histona Desacetilase 1/genética , Humanos , Fator Regulador 1 de Interferon/genética , Lúpus Eritematoso Sistêmico/imunologia , Ativação Linfocitária/imunologia , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Transdução de Sinais/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ativação Transcricional/genética
12.
Methods Mol Biol ; 2270: 451-467, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33479913

RESUMO

Transplantation is still the treatment of choice for organ failure; however, allograft induces inflammatory immune responses that require immunosuppressive treatment. The role of regulatory B cells (Bregs) in downregulating inflammation has been reported to be significant in several diseases including transplant rejection. Many reports have analyzed different B-cell subpopulations, including Bregs, in tolerant, stable, and rejecting transplant recipients as well as the influence of immunosuppressant on the frequencies and functions of the different B-cell subsets. In this chapter, the key techniques required to investigate human Breg frequencies and functions in transplant patients are discussed.


Assuntos
Linfócitos B Reguladores/imunologia , Linfócitos B Reguladores/transplante , Imunofenotipagem/métodos , ADP-Ribosil Ciclase 1/imunologia , Antígeno CD24/imunologia , Contagem de Células , Proliferação de Células/fisiologia , Feminino , Humanos , Imunossupressores , Interleucina-10/imunologia , Masculino , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
13.
Sci Rep ; 10(1): 20383, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230233

RESUMO

Type II diabetes (T2D) may worsen the course of hepatitis C virus infection with a greater risk of liver cirrhosis (LC) and hepatocellular carcinoma (HCC). In chronic viral infections, the deranged B cell subset signifies uncontrolled disease. The study aimed to verify the relation between B cell subsets' distribution and liver disease progression in chronic hepatitis C (CHC) patients with T2D. A total of 67 CHC patients were divided into two groups; 33 non-diabetic and 34 with T2D. Each group was subdivided into CHC-without LC or HCC (N-CHC), CHC-with LC (CHC-LC), and CHC-with HCC (CHC-HCC). Twenty-seven healthy individuals also participated as controls. Flow cytometry was used to analyze CD19+ B cell subsets based on the expression of CD24 and CD38. CD19+CD24hiCD38hi Immature/transitional B cells elevated in diabetic than non-diabetic patients. In diabetic patients, while CD19+CD24+CD38- primarily memory B cells were higher in CHC-N and CHC-HCC groups than LC with a good predictive accuracy of LC, the opposite was observed for CD19+CD24-CD38- new memory B cells. Only in diabetic patients, the CD19+CD24intCD38int naïve mature B cells were high in CHC-HCC patients with good prognostic accuracy of HCC. Merely in diabetic patients, several correlations were observed between B cell subsets and liver function. Immature/transitional B cells increase remarkably in diabetic CHCpatients and might have a role in liver disease progression. Memory and Naïve B cells are good potential predictors of LC and HCCin diabetic CHCpatients, respectively. Further studies are needed to investigate the role of the CD19+CD24-CD38- new memory B cells in disease progression in CHC patients.


Assuntos
Subpopulações de Linfócitos B/patologia , Carcinoma Hepatocelular/patologia , Hepacivirus/patogenicidade , Hepatite C Crônica/patologia , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , ADP-Ribosil Ciclase 1/genética , ADP-Ribosil Ciclase 1/imunologia , Adulto , Idoso , Antígenos CD19/genética , Antígenos CD19/imunologia , Subpopulações de Linfócitos B/classificação , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/virologia , Antígeno CD24/genética , Antígeno CD24/imunologia , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/virologia , Estudos de Casos e Controles , Diabetes Mellitus Tipo 2 , Feminino , Expressão Gênica , Hepacivirus/crescimento & desenvolvimento , Hepatite C Crônica/complicações , Hepatite C Crônica/imunologia , Hepatite C Crônica/virologia , Humanos , Memória Imunológica , Imunofenotipagem , Cirrose Hepática/etiologia , Cirrose Hepática/imunologia , Cirrose Hepática/virologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/virologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Pessoa de Meia-Idade
14.
J Immunol Res ; 2020: 8935694, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32775471

RESUMO

B regulatory cells (Breg) refer to characteristic subsets of B cells that generally exert anti-inflammatory functions and maintain peripheral tolerance mainly through their ability to secrete interleukin-10 (IL10). Dysregulation in the function of Breg cells was reported in several autoimmune diseases. However, the relation between Breg and children with type 1 diabetes (T1D) is poorly understood. Thus, this study is aimed at determining whether Breg cells play a role in T1D in children or not, so we hypothesized that an altered phenotype of B cell subsets is associated with T1D in children. Children with T1D (n = 29) and control children with normal blood glucose levels (n = 14) were recruited. The percentages of different circulating IL10-producing Breg subsets, including B10, immature transitional, and plasmablasts were determined using flow cytometry analysis. Furthermore, the association between different IL10-producing B cells and patient parameters was investigated. The percentage of circulating IL10+CD24hiCD27+ (B10) and IL10+CD24hiCD38hi (immature transitional) subsets of Breg cells was significantly lower in T1D patients than in healthy controls. Moreover, these cells were also negatively correlated with fasting blood glucose and HbA1c levels. Breg cells did not correlate with autoantibody levels in the serum. These findings suggest that certain Breg subsets are numerically deficient in children with T1D. This alteration in frequency is associated with deficient islet function and glycemia. These findings suggest that Breg cells may be involved in the loss of auto-tolerance and consequent destruction of pancreatic cells and could, therefore, be a potential target for immunotherapy.


Assuntos
Linfócitos B Reguladores/imunologia , Diabetes Mellitus Tipo 1/imunologia , ADP-Ribosil Ciclase 1/imunologia , Autoanticorpos/imunologia , Doenças Autoimunes/imunologia , Glicemia/imunologia , Antígeno CD24/imunologia , Criança , Pré-Escolar , Feminino , Humanos , Tolerância Imunológica/imunologia , Inflamação/imunologia , Interleucina-10/imunologia , Ilhotas Pancreáticas/imunologia , Masculino , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia
15.
Front Immunol ; 11: 1324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32765491

RESUMO

Tumor immune escape is an important part of tumorigenesis and development. Tumor cells can develop a variety of immunosuppressive mechanisms to combat tumor immunity. Exploring tumor cells that escape immune surveillance through the molecular mechanism of related immunosuppression in-depth is helpful to develop the treatment strategies of targeted tumor immune escape. The latest studies show that CD24 on the surface of tumor cells interacts with Siglec-10 on the surface of immune cells to promote the immune escape of tumor cells. It is necessary to comment on the molecular mechanism of inhibiting the activation of immune cells through the interaction between CD24 on tumor cells and Siglec-10 on immune cells, and a treatment strategy of tumors through targeting CD24 on the surface of tumor cells or Siglec-10 on immune cells.


Assuntos
Antígeno CD24/imunologia , Lectinas/imunologia , Receptores de Superfície Celular/imunologia , Evasão Tumoral , Animais , Humanos , Neoplasias/imunologia
16.
Mol Metab ; 42: 101060, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32763423

RESUMO

OBJECTIVES: The main endocrine cell types in pancreatic islets are alpha, beta, and delta cells. Although these cell types have distinct roles in the regulation of glucose homeostasis, inadequate purification methods preclude the study of cell type-specific effects. We developed a reliable approach that enables simultaneous sorting of live alpha, beta, and delta cells from mouse islets for downstream analyses. METHODS: We developed an antibody panel against cell surface antigens to enable isolation of highly purified endocrine subsets from mouse islets based on the specific differential expression of CD71 on beta cells and CD24 on delta cells. We rigorously demonstrated the reliability and validity of our approach using bulk and single cell qPCR, immunocytochemistry, reporter mice, and transcriptomics. RESULTS: Pancreatic alpha, beta, and delta cells can be separated based on beta cell-specific CD71 surface expression and high expression of CD24 on delta cells. We applied our new sorting strategy to demonstrate that CD71, which is the transferrin receptor mediating the uptake of transferrin-bound iron, is upregulated in beta cells during early postnatal weeks. We found that beta cells express higher levels of several other genes implicated in iron metabolism and iron deprivation significantly impaired beta cell function. In human beta cells, CD71 is similarly required for iron uptake and CD71 surface expression is regulated in a glucose-dependent manner. CONCLUSIONS: This study provides a novel and efficient purification method for murine alpha, beta, and delta cells, identifies for the first time CD71 as a postnatal beta cell-specific marker, and demonstrates a central role of iron metabolism in beta cell function.


Assuntos
Antígenos de Superfície/imunologia , Células Secretoras de Insulina/metabolismo , Ferro/metabolismo , Animais , Antígenos CD/imunologia , Antígenos de Superfície/isolamento & purificação , Antígenos de Superfície/metabolismo , Biomarcadores/metabolismo , Antígeno CD24/imunologia , Linhagem Celular , Feminino , Células Secretoras de Glucagon/imunologia , Células Secretoras de Glucagon/metabolismo , Células Secretoras de Glucagon/fisiologia , Humanos , Imuno-Histoquímica/métodos , Células Secretoras de Insulina/imunologia , Células Secretoras de Insulina/fisiologia , Ferro/fisiologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/metabolismo , Pâncreas/fisiologia , Receptores da Transferrina/imunologia , Reprodutibilidade dos Testes , Células Secretoras de Somatostatina/imunologia , Células Secretoras de Somatostatina/metabolismo , Células Secretoras de Somatostatina/fisiologia
17.
Exp Cell Res ; 390(2): 111968, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32197932

RESUMO

EBV-associated gastric carcinoma (EBVaGC) is accompanied by massive lymphocyte infiltration, but therapy resistance and tumor progression still occur in patients with EBVaGC. Cancer stem cells (CSCs) are reported to possess immunomodulatory ability that allows them to resist immune-mediated rejection for many tumor types. However, whether and how CSCs in EBVaGC exhibit immunosuppression has not yet been elucidated. We isolated CSC-like sphere-forming cells (SFCs) from EBVaGC cell line SNU-719 using the cancer sphere method. We validated their CSC-associated properties in the expression of the epithelial-mesenchymal transition (EMT)-related genes, the ability to form colonies, and resistance to chemotherapy drug-induced apoptosis and explored their immunomodulatory ability using the coculture system with PBMC (peripheral blood mononuclear cell). These CSC-like SFCs were CD44+CD24-/low and were more tumorigenic than the parental SNU-719 cells in the xenograft mouse model. Remarkably, in the tumor-PBMC co-culturing experiments, these EBVaGC SFCs demonstrated profound immunosuppression by inhibiting the proliferation of PBMCs and T cell activation as well as inducing the generation of regulatory T cells (Tregs). Furthermore, the induction of Tregs was partially dependent on prostaglandin E2 (PGE2) produced from SFCs. Moreover, the presence of high CD44+CD24-/low cells in tumor tissues predicted a decreased disease-free survival in patients with EBVaGC. Our study collectively confirmed the existence and immune resistance of CSCs in EBVaGC and offers new insights into the development of novel anti-EBVaGC strategies by targeting CSCs.


Assuntos
Antígeno CD24/imunologia , Carcinoma/imunologia , Dinoprostona/imunologia , Infecções por Vírus Epstein-Barr/imunologia , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos/imunologia , Neoplasias Gástricas/imunologia , Adulto , Idoso , Animais , Antígeno CD24/genética , Carcinoma/complicações , Carcinoma/genética , Carcinoma/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Dinoprostona/biossíntese , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/imunologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/patologia , Feminino , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/patogenicidade , Humanos , Receptores de Hialuronatos/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Pessoa de Meia-Idade , Transdução de Sinais , Esferoides Celulares/imunologia , Esferoides Celulares/patologia , Neoplasias Gástricas/complicações , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/patologia , Linfócitos T Reguladores/virologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Natl Cancer Inst ; 112(5): 507-515, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31406992

RESUMO

BACKGROUND: Treatment failures in cancers, including multiple myeloma (MM), are most likely due to the persistence of a minor population of tumor-initiating cells (TICs), which are noncycling or slowly cycling and very drug resistant. METHODS: Gene expression profiling and real-time quantitative reverse transcription polymerase chain reaction were employed to define genes differentially expressed between the side-population cells, which contain the TICs, and the main population of MM cells derived from 11 MM patient samples. Self-renewal potential was analyzed by clonogenicity and drug resistance of CD24+ MM cells. Flow cytometry (n = 60) and immunofluorescence (n = 66) were applied on MM patient samples to determine CD24 expression. Therapeutic effects of CD24 antibodies were tested in xenograft MM mouse models containing three to six mice per group. RESULTS: CD24 was highly expressed in the side-population cells, and CD24+ MM cells exhibited high expression of induced pluripotent or embryonic stem cell genes. CD24+ MM cells showed increased clonogenicity, drug resistance, and tumorigenicity. Only 10 CD24+ MM cells were required to develop plasmacytomas in mice (n = three of five mice after 27 days). The frequency of CD24+ MM cells was highly variable in primary MM samples, but the average of CD24+ MM cells was 8.3% after chemotherapy and in complete-remission MM samples with persistent minimal residual disease compared with 1.0% CD24+ MM cells in newly diagnosed MM samples (n = 26). MM patients with a high initial percentage of CD24+ MM cells had inferior progression-free survival (hazard ratio [HR] = 3.81, 95% confidence interval [CI] = 5.66 to 18.34, P < .001) and overall survival (HR = 3.87, 95% CI = 16.61 to 34.39, P = .002). A CD24 antibody inhibited MM cell growth and prevented tumor progression in vivo. CONCLUSION: Our studies demonstrate that CD24+ MM cells maintain the TIC features of self-renewal and drug resistance and provide a target for myeloma therapy.


Assuntos
Mieloma Múltiplo/patologia , Células-Tronco Neoplásicas/patologia , Animais , Antígeno CD24/biossíntese , Antígeno CD24/imunologia , Carcinogênese , Autorrenovação Celular/fisiologia , Resistencia a Medicamentos Antineoplásicos , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Células-Tronco Neoplásicas/imunologia
19.
Clin Exp Immunol ; 200(1): 22-32, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31849037

RESUMO

B10 cells restore immune balance by producing interleukin (IL)-10. Impaired B10 cell responses are related to numerous autoimmune diseases. However, the function of B10 cells in type 1 diabetes (T1D) patients is controversial. We hypothesized that there are numerical and functional defects of B10 cells in T1D. Sixty-two patients with T1D and 74 healthy volunteers were included in our study. We showed that B10 cells in human peripheral blood belong to a CD24hi CD38hi B cell subpopulation. CD24hi CD38hi B cells from healthy individuals possessed regulatory capacity, suppressed interferon (IFN)-γ, tumor necrosis factor (TNF)-α and IL-17A production and promoted IL-4 production and forkhead box protein 3 (FoxP3) expression in CD4+ T cells through an IL-10-dependent mechanism. Compared to healthy controls, B10 cell percentages in T1D were significantly lower (5·6 ± 3·5 versus 6·9 ± 3·3%; P < 0·05), produced less IL-10 (15·4 ± 4·3 versus 29·0 ± 4·5%; P < 0·001) and lacked regulatory capacity. In addition, Pearson's correlation analysis showed that the frequency of circulating B10 cells was negatively correlated with the frequency of CD4+ IFN-γ+ and CD4+ TNF-α+ T cells (r = -0·248 and r = -0·283, P = 0·008 and P = 0·017, respectively), positively correlating with the frequency of CD4+ CD25+ FoxP3+ T cells (r = 0·247, P = 0·001). These data offer direct proof that there is a deficiency of circulating CD24hi CD38hi B cells in peripheral blood of patients with T1D, which participate in the T1D immune imbalance involved in the development of T1D.


Assuntos
ADP-Ribosil Ciclase 1/imunologia , Linfócitos B Reguladores/imunologia , Antígeno CD24/imunologia , Diabetes Mellitus Tipo 1/imunologia , Interleucina-10/imunologia , Glicoproteínas de Membrana/imunologia , ADP-Ribosil Ciclase 1/metabolismo , Adolescente , Adulto , Subpopulações de Linfócitos B/imunologia , Subpopulações de Linfócitos B/metabolismo , Linfócitos B Reguladores/metabolismo , Antígeno CD24/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Criança , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Humanos , Interleucina-10/metabolismo , Masculino , Glicoproteínas de Membrana/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Adulto Jovem
20.
J Immunol ; 203(8): 2110-2120, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31511354

RESUMO

Although IL-10-producing regulatory B cells (Bregs) play important roles in immune regulation, their surface phenotypes and functional characteristics have not been fully investigated. In this study, we report that the frequency of IL-10-producing Bregs in human peripheral blood, spleens, and tonsils is similar, but they display heterogenous surface phenotypes. Nonetheless, CD24hiCD38hi transitional B cells (TBs) and CD24hiCD27+ B cells (human equivalent of murine B10 cells) are the major IL-10-producing B cells. They both suppress CD4+ T cell proliferation as well as IFN-γ/IL-17 expression. However, CD24hiCD27+ B cells were more efficient than TBs at suppressing CD4+ T cell proliferation and IFN-γ/IL-17 expression, whereas they both coexpress IL-10 and TNF-α. TGF-ß1 and granzyme B expression were also enriched within CD24hiCD27+ B cells, when compared with TBs. Additionally, CD24hiCD27+ B cells expressed increased levels of surface integrins (CD11a, CD11b, α1, α4, and ß1) and CD39 (an ecto-ATPase), suggesting that the in vivo mechanisms of action of the two Breg subsets are not the same. Lastly, we also report that liver allograft recipients with plasma cell hepatitis had significant decreases of both Breg subsets.


Assuntos
ADP-Ribosil Ciclase 1/imunologia , Linfócitos B Reguladores/imunologia , Antígeno CD24/imunologia , Hepatite Autoimune/imunologia , Glicoproteínas de Membrana/imunologia , Plasmócitos/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , ADP-Ribosil Ciclase 1/sangue , Linfócitos B Reguladores/patologia , Antígeno CD24/sangue , Hepatite Autoimune/sangue , Hepatite Autoimune/patologia , Humanos , Glicoproteínas de Membrana/sangue , Plasmócitos/patologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA